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1 . Introduct i on. Recently, Boley & Golub [1] have examined the problem of re-

constructing an NxN , symmetric , pentad iagona l matrix from its spectra l data.

The formulation of this inverse problem follows the line pioneered by Hochstadt

[2] for tridiagona l matrices . Namely, the given spectra l data are made up by

the elgenva l ues of the orig ina l pentadiagonal matrix , as well as the eigenva l ues

of two closely related matrices obtained by delet i ng respectively the first one

and two rows and columns . Whereas the equ i valent procedure yielded a unique

solution for tridiagona l matrices [2], Boley & Golub found a 2N~ multiplicity

of solutions for the pentadiagona l case.

This result mi ght seem puzzling at first. Indeed , pentadiagona l matrices

can be viewed as finite difference ana l ogues of certain 4th order differential

operators , such as that governing the vibration of a beam. And , in my i nvesti-

gation of the inverse problem for the discrete beam 13], I showed that given

three so—called sympathetic spectra , the solution of the inverse problem , if

it existed , was un i que.

The aim of the present paper is to clarif y this apparen t contradiction

between Boley & Golub’ s result and mine. The key to the paradox lies in the

fact that Bol ey & Golub used three spectra which are not sympathetic , i.e. which

are not equivalent in information to the data conta i ned in the impu l se response.

In order to illustrate this important point about the need for the spectra l

trio to be interrelated , I shall consider a specific i nverse problem for the

vibrating beam with three non-sympathetic spectra . More specifically, the

spectra l data will consist of the natura l frequencies of vibration of the beam

in the following three confi gurations : (1) clamped—clamped , (ii) clamped-supported

and (iii) clamped—free. Eminentl y reasonable though this choice of spectra may be

from the engineering point of view , It has the drawback that these three spectra

are not sympathetic and cannot insure a un i que solution. In fact , for the Nth

----

~ .
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discret i zed version of this problem , we shall see that there are 2N 1  sol utions ,

thus arriving at a multiplicity of solutions similar to that found by Boley &

Go 1 ub.

The outline of the paper is as follows . In §2, we shall derive the basic

equations for a discrete beam: this simple mechanica l system will prov i de valu-

able Insights into the inverse problem. §3 contains all the necessary ingredients

for a consideration of the inverse problem. Finally, in §4 we consider the partic-

ular inverse problem for which the spectra l data are associated with the natura l

frequencies of vibrations in the clamped/clamped , clamped/supported and clamped!

free configurations. We shall show that with such data , the i nverse problem has a

fold multiplicity of solutions .
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2. The discrete beam. Consider a beam of l ength L characterized by a variable

flexu ra l rig idity El and a variable density p. If y(x,t) stands for the dis-

placement of the centra l line , then the classica l equation govern i ng the infin i-

tesimal oscillations of this beam is

2 2 2
— !_~~. E 1-~L~ — ~~ , 0 < x < L. (I)

ax at

For the sake of definiteness , we shall assume that the left end of the beam is

clamped , I.e.

y(O,t) “.~~.y(O ,t) 0 (2)

Let us now consider the follow i ng conceptua l experiment : at time t = 0,

we strike impulsively the ri ght end of the beam wh i ch is assumed to be stress—

free. We then mon i tor the ensuing displacement as well as the slope of the

centra l line of this ri ght end . To carry out this program mathematically, we

must solve equation (1) subject to (2) and to

y(x,O) .~~~y(x,O) = 0,

2 2
y(L,t) = El ~~~~~~ y(L,t ) — FS ( t ) — 0,

ax ax 3x

in order to deduce the impu l se response, viz. y(L,t) and .~—y(L,t). This is best

accomplished by working in the frequency domain; to that effect , we define

u(x,w) = f e ~
wt y(x,t) dt. (4)

More i mportantly, in preparation for the discretization , it is conven i ent

to transform (1) into a system of first order equatk~.s. Therefore, let us define

8(x,w) to be the slope of cent ra l line , i.e.

u 8 (5)

and r(x,w) to be the moment about the centra l line , i.e.

8’ — f(x)t. (6)

— -— • . . — - - - — .-- — . —- - — ~4 - 
~~~~~~

. — -__‘____ :—--‘- — —-— - - —-S—- —
~~ 

— _________________________________________________________
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In the above formulas , a prime denotes differentiat ion with respect to x and

f(x) — 1/El is a measure of the ‘9impness” at x. To complete our transformation

to a first order system of equations , we introduce q (x,w) wh i ch represents the

force applied to the centra l line. Consequently,

(7)

With these new variables , Newton ’s law reads

(8)

The boundary conditions (2)—(3) can now be written thus:

u (O )  0(0) = 0, (9)

t(L) — ~(L)—F — 0. (10)

We shall be concerned with the discrete version of the system (5)-(8)

subject to conditions (9)-(lo). The simplest and most physically meaningfu l

way to discret i ze this problem consists in restricting p (x) and f(x) to be sums

of delta functions , viz.

N
p(x) = m. S (x—x 1 )

i— l (11)
N

f(x) — ~ f. S (x—x~)
i— I

where

0 — x <  x < ... <x =L. (12)o 1 N

Phys i cally, this means that the beam is made up of segments of l engths

— x1~ 1 
— x1 

( 1 3)

of zero weight and “limpness ”, i.e. of zero weight and infinite stiffness. These

segments are connected by joints of mass m 1 and concentrated limpness 
~ 

l ocated

at x — x~. For instance , we can think of these joins as clot hespin—like devices.

We can see from (6) and (8) that in the interva l (x1.7 ,  x 1 ), both B and ~

are constants , I.e.

-- - - .  * 
___ 

-.._ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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I 1 for xc(x , x.) (14)
q ( x ,w) — 

~
‘i-l 

1-1 1

Substituting these expressions in (5) and (7) we deduce that

u(x,w) = u 1~ 1 + (x—x . 1 ) 8 i—l
for xe(x. , x.) ( 1 5)

= 
~~~~ 

- (x—x~. 1 ) ~~~~ i-i i

We get the discrete equations by examining the jump conditions at x~. As can be

seen from (5)—(8), these conditions are:

[u]1 0

[91 — f. T(X ,u )
I i I (16)

[t]. — 0
2

= -w m 1 u(x1, w)

where [u]
~ 

stands for u(x1+O,w) 
— u(x~—0,w)~ etc.

Replacing (14)— (l5) into (16) yields

u. u. +~~~. 8u i —l i— l I—I

0. — B .  + f .t
I i 1  I I (17)

T. — -

~i—l - w2m.u.

Since u and T are continuous , it is clea r that

u~ — u(x~,w)

—

whereas by the very definition in (14)

— 0(x1+O,w) ,

—

To compl ete the formulation of the discrete direct problem , we shall impose the

follow i ng boundary conditions:

u0 — 00 0, (18)

tN — ‘~N~~ 
— 0. (19) 

. - - - -  — fl.—- ~~~~~~~~~— - 
—
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Before proceeding wi th the computation of the impulse response , viz. uN and

it is perhaps worth wr i t ing (17) as a single forth order difference equation ,

namely

1 1 1 1 _____
U.~~2 

— 

~1+l
2.
~
2.l+l 

+ f I+l2.i
2 + f 9~~~

+ 
f~~~~~~

} Ui~~ 1

+ 

~
f
~+i

2.
~~~ 

f~~~
2 + f~~~~~ ~f t ~~~ 

+ f Z 2~ 
u.

- 
f12.~_ 1 2., 

+ f~~~~
2 + f1_ 1 L1_ 1

2 f~~1~~~22.~~1 ~~

+ 
I u. = w2m.u.. (18)

~I—1 2.I—2 2.I— l —2

Now, f we introduce the f ie ld

a m .~ u. (19)

then (18) can be written as

c 1_2 v 1 2  
+ b 1.~1v~_ 1 + a.v

~ 
+ b.v.~ 1 + C

i v i+2 = w
2v. (20)

where

a. _ J__ [ 1 
+ 

1 
+ 

2 
+ 

I 
+ 

1 1 , (2la)
I m. I-f . 2. 2 f.2. .2 f .2.. 2.. f .2. . 2 f. ~~~ 

2

L 1+1 I I I I i 1  I I i — l i—I 1 l

~~~ 
_ l
~~~~~[ 

1 
+ 

I 
+ 

1 
+ 

1 
, (21b)

(m 1m 1~~1) L l+l 2.i 2.i+1 ~~+1
2.
~ 

f& 2 f12.1_ 1 2.1

C
i 

~~~~~~~ [f1+l~~I
2.1+1 

]. 
(2lc)

Thus, the inverse problem for a discrete beam corresponds to an inverse problem

for a symetric pentad iagona l matrix in wh ich the elements of the f i rs t  off—

diagonals are negative , all other elements being positive .

- ~~~~~~ -- —. ——-. —- -. — -r 
- 

- —
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One fina l remark regard i ng the discret i zation . No particular si gnificance

should be attached to the choice of the clamped boundary conditions (18). How-

ever , having made tha t cho ice , it is easy to see from (17) that

0, (22)

i.e. the f irst jo int does not movet As a result , the mass m 1 does not enter

Into the problem . in fact , for this clamped/free case, the eigenvalue problem

for the pentadiagona l matrix looks as follows :

a
2 

b2 c
2 

0 • • • • v2
b2 a3 b3 c3 

• • • v
3 

V
3

• 
. : 2 : (23)

b~_ 1 V
N 1  

VN 1

b~~1 a~ vN V
N

where
_ _  _ _ _ _ _  + _ _ _ _ _ _ _  + _ _ _ _ _  + _ _ _ _ _

mN_ l [ N— l 2.N— 1 2 ~N— 1
2.N—22.N— l N— l 2.N—22 N—22.N—22

b = 
— l  r 1 

+ 
1

N-I (mN_ l mN)~ [fN_ l 2.N_ l 2 ~N-l
2.
N-2

t
N-l

f

mNfN_ l LN .l 2

We shall not pursue the problem via the pentad iagona l matrix since this tends

to shroud the physics.

3. The wedge product. The direct problem consists in finding UN and 8N given

the beam characteristics , {m
1
}~~, {f1 }~. The solution to this problem is

straightforward . We introduce two linearly i ndependent fundamental solutions

•

~

::i:_

~ 

:~~~~~~~~~~
‘ - -

~~ 
- - -~~ -- — .-— - - - - ———
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of the difference equations (17). Using a superscript to labe l these solutions ,

we define ~~~~ ~
(1) 

~
(l) ~,(i)~ and [u~

2), o(
2), ~

(2) 
~
(2)

i or more

succintly and ~
(2) in such a way that

~
(l) 

— [0 0 1

(24)
(2) [0 0 0 11T

where T stands for transpose.

Then
= au~~ + bu~

2’. (25)

In order to evaluate the constants a and b, we make use of the boundary conditions

(19) at XN, namely

T
(
~~ T

(2) 
a 0N N

= . (26)

(1) (2)
b F

Omitting the trivial intermediary calculations we find tha t the constituents of

the impulse response can be expressed thus:

{u , r }
uN = F  , (27a)

{TN ,  
~
‘N}

and
{e , T }

BN F N N 
, (27b)

{tN~ 
1
~N}

where from now on we shall use a bracket as a shorthand notation for determinants

of certain 2 x 2 matrices , namely

{a , b} — a (1) b (2) — a(2) b e” (28)

______________ — ____— — — — — —- ——-—— - _ 4 .- —S.— — — — - — — — — — - -  - — — — - —
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Bracket expressions w i l l  be formed for each point x~, e.g.

(1) (2) (2) (1)-Cu 1, r1 } U~ T
~ 

— U~~ T~~

These bracket expressions are related to the so—called wedge product of ~~~
and ~~~~ Given the 4 x 2 matrix

= ~~(l) ~~
2) i

— .1 — 1 — . 1

the wedge product

A (2) (29)

is a vector wi th components ~~~ (a = 1 , 2, . . ., 6) equa l to the determinants

of the matrices obtained from by deleting two rows . If the labe l a is

attached to the chosen rows in a lexicographic manne r , then it is clear that

Z
1 

= {u., 8.}

Z
2 

= {u~, r~
}

= 1u 1, q 1 }

Z4 1  
= 

~~~ 
T

~~
} 

(30)

= {0~~ , ~~
}

z6 i  
= CT 1, ~~

}

Rather than working wi th ~~
1) and ~

(2) whose components are polynomials

in w2 and t hen forming the bracket expressions , a risky numerica l procedure

in view of the cancellations , f t  is preferable to work wi th the brackets ab i n i t i o .

Our next task then is to derive equations for Z 1 . ,  . . .. Z6~~. Using

the difference equations (1 7), it is a simple matter to deduce that

Z1 1  
= Z 1 ,1 1  + fi Z2 i  (31a)

Z2~ - Z2,1 1  - L 1_ 1 Z 3, 1 1  + 2.~_ 1 Z 4 ,1~~1 
- 2.~~ Z5,~_ 1 (31b)

- -.---_,-—- __ .-— -~ - —- — -- -- - - - - - -—---  — --——-- .-
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= Z3,, 1  + (31c)

Z4,i z4,~~1 
- 2.

~_ i Z5, 1_ i (3 ld)

Z . Z .
~~~ 

+ f.Z6 ~~~~ 

+ w2m.Z1 . , (3le)5,i 5,1 I , I I , I

Z 6 f  = Z6,1~ 1 + w2m
~
Z2~~ 

. (3lf)

From the bounda ry conditions (24), it fol lows that

Zao = IS
6 

a = 1 , 2 , . . ., 6 . (32)

The above equations can be s impl i f ied s l ight ly .  Indeed , from (3 lc) and

(3l d), we see that

z . +z . = z  .3,, 4,, 3,i— I 4, —l

wh i ch, in view of (32), implies that -

z3~ 
= —z~~1 . 

- 

(33)

We can therefore eliminate Z3~~ and rewr ite equations (31) as

Z 1 . — Z1 
~~~~ 

+ f .Z ., . , (34a )
, I ~ , I I ~., I

Z2~ = Z2~~~1 + 22.i_ 1 Z4 I_ i - 2.1 1
2 z5,~_ 1 (34b)

~ 4 i  
= ZL+ i — i  

— 2.i_ i z5 i— l 
(34c)

Z . — Z • l  + f
i

Z
6 • l  + w2m.Z1 . , (34d )5, i 5, , 
,~~ , ,I

— ~6 ~
- 1 + w2m.Z2 . . (34e)

, I , I I , I

These are the equations which are best suited for solving the inverse problem.

It is important to real ize that the components of Za i  are not independent.

indeed , in addition to the linear i dentity (33), these components sat is fy  the

following quadratic identity:



— 1 1 —

2
— Z4 1  

- Z2 ~z5,1 
— 0 (35)

This identity can be derived from the equations (34). However , such a derivation

hides the fact that this i dentity is al gebraic in nature. It has a long history

which goes back to wor k done in the eighteenth century on “vanishing aggregates

of determ i nants” (see e.g. [4], bottom of p. 50). This quadratic identity will

play a crucial role in whether or not the Inverse prob l em has a uniq ue solution.

We close this paragraph by returning to the determination of the impulse

response. In view of (27), this is tantamount to the determination of

Z2 ~~~~~ 
Z4 N~

W
~~ 

and Z6 N ( w ) .  Starting wi th  the conditions (32), we can

find these quantities , as we l l  as Z 1 N
( W )  and Z

5 N
(w2), by solving the difference

equations (34). For N>2, these quantities are polynomials in of the following

form

ZI N ( w )  = Z 1 N (0) (1 — 
~~~ (36a)

n 1

1~1-2 2
Z., 

~~~~ 
= Z., N

(t
~ 

( 1 — ~~ ) , (36 b )
, , A nn 1

Z4 N
(w2) = N (0) H (1 - !~L~ ) , (36c )

n 1

Z
5 N

( w )  — Z5N
(O) ~~ (1 - ~~~ ) (36d )

n I

N-i 2
Z6 N ’

~~~ 
— Z6 N(0) 

1 (1 - 
~~~~~ 

) . (36e)
, I I

n 1
The zeros of these polynomials are the squares of the ei genfrequencies

of the discrete beam in various vibrat i ng configurations. These vibrat i ng con-

fi gu rations are such that the left end is always clamped , whereas the conditions

- — fl - ~~~~~~~~~~~~~ - ____________________________
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at the right end differ. For instance CKn}r2, 
~~n~

’
~~

2 and correspond

respect i vely to the cases in which the ri ght end is clamped , supported and

stress free. The constants Z1 N (O), . . ~ z6 ~~~ appearing in (36) are

easily deduced by setting w2 = 0  in (34) and solving the resulting difference

equations. This calculation shows that

z1 N (O) 
— f~ 

~ 
(x~~xj)

2 f~~ (N~2) (37a)
1=2 j=l

Z2 N (0) 
a 

~~2 
-

~~~ 
(xN~

xi )
2 

f
1 

(N~2) (37b)

N-I
Z4N (O) -P

1~~ 
-

~~~~ 
(xN~

x i ) ~ 
(N~2) (37c)

i=1

Z6,N (O) 
a 1 . (37e)

4. The i nverse problem. As previously mentioned , in view of our part i cular

choice of bounda ry conditions at the left end , m 1 
does not enter into the

problem . Therefore, the solution of the inverse problem consists in recovering

the 3N— l beam characteristics Cm
~
}
~ , {f.}~ ,

In order to arrive at a unique solution , we must use impulse response

data together with two additiona l constraints [3]. We have seen that the

i mpulse response data are equiva l ent to the three sympathetic spectra

{X~}~~
2 , , and the two sums

N— 1
P

1 
— 

~ 
(X

N~~
x ; ) f. , (38)

i— I
N— 1

— 

~ 
(xN—x i )

2f1 . (39)
i— I

- - - - - - - - -- --.- ~~~~~~~~~~~ -~~~~~~--- - - - -~~~~~~ —--
-
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To these 3N—3 pieces of information , we add another sum, say

N— I
P
0 

— (4o)
— 1

and a normalization

N— 1
X
L 

E ~ £.—L . (41)
1—0 

I

Of course , we could translate these requirements into ana logous ones for

pentadiagona l matrices of the type (23). But , without the underly ing connection

with the beam, these conditions would not be very meaningful.

We shal l not review the procedure necessary for solving the inverse

problem. Suffice it to say that this procedure consists of two steps [3].

The first step is the eva l uation of the missing pol ynomials ZI N~~~
) and

Z S N (w 2 ) via the quadratic identity (35) . These po lynomials can be determined

uniquely provided that the g i ven data are associated with the impulse response.

I ndeed , subs t i tu t ing
N—22 r 2KZ1 N (W ) = (42)
K 0

and

Z5N (w) = + 
K 

PK
W (43)

into the quadratic identity and equating the coefficien ts of various powers

of w2 equa l to zero we can derive a set of 2N-2 linea r equations for the Un—

N— N—2 . . 2 -- 2knowns and {q~}0 
. Having determ i ned Z1 N (w ) and .

~ . N (w ) and

thus knowing al l  the components of Za N
(W2 ) we can proceed wi th  the second

step. This consists In finding mN, 
~ 

2.N—l and ZaN _ l (w
2) from (34) by

means of suitable operations with pol ynomials such as divisions and additions.

Once again , the results of these operations are unique. By repeating the 

--- - ~~~~ - - - - - — —-~~ _w __
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — 
~~~~~~~~~

-— - -
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same operations for the successive intervals the unique solution to inverse

proble m is obtained .

The above mentioned procedure breaks down if the given spectra are not

sympathetic. In order to illustrate the changes brought about by data which

are not related to the impulse response, let us consider the case in wh i ch

Z I N (w 2), Z2 N (w2 ) and Z6 N (w 2) are given . Referring to (30) for the defini-

tions of Z1 N ,  Z2~~ 
and Z6N it is clear that the zeros of these polynomials

correspond to the natura l frequencies of vibrations of the beam in the clamped!

clamped , clamped/supported and clamped/free confi gurations. Following the

2 2same procedure as before , we fIrst attempt to find Z
5~~

(w ) and Z4N (w )

which we wr i te thus:
2 N-2 2KZ4 N (w -) = 

~ ~K 
w (44)

K=O

Once again , the qt~adratic identity prov ides us wi th  2N—2 equations for the un-

knowns at hand , namely -(
~~~}~~~

2 and 
~~~~~~~~~ 

However, these equations are

no longer linear equations for and s but rather linea r for and quadratic

for SK I By eliminat i ng the q~ ’s we can deduce N—I quadratic equations for the

5
K 

Appealing to a theorem of B~zout
t (see e.g. [5], p. 10) there are in

general 2l
~~

1 solutions to these equations i.e. 2~~
1 pol ynomials Z4N (w2) and

Z5N (w ) compatible with the given data . For each one of these 2 pa i rs , we

can find corresponding va l ues of mN , N , 2.N— l and Za N l  (w
2) by means of the

usua l polynomial manipulations. Thus, we generate 2 solutions to the i nverse

problem.

The second definition of sympathetic spectra [3] is now quite natural.

Such spect ra are the zero s of those three po lynomials for which the remaining

tB~zout I s theorem: N pol ynomial equations of degrees n 1, n.,, . . ., nNin N variables have in genera l n 1 n2 . . coniiion solution~ . when the number

is greater, it is Infinite.

____
., ., 
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two polynomials can be uniquel y determined by the quadratic i dentity . For

ins tance, the zeros of ZI N~’~~~’ 
Z4N (w2) and Z2 N (w2) form a trio of sympa-

thetic spectra. In their investigation of the inverse problem for symmetric ,

pentad i agona l matrices , Boley & Golub chose their spectra l data primarily

for convenience and without regard to whether or not the three spectra were

sympathetic. As a result , the fact that they found a multiplicity of solutions

is no longer surprising.

——.—- —-——--.~~~ --.- —.-“ -
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